On the critical exponent in an isoperimetric inequality for chords
نویسندگان
چکیده
منابع مشابه
On the critical exponent in an isoperimetric inequality for chords
1) Nuclear Physics Institute, Czech Academy of Sciences, 25068 Řež near Prague, 2) Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18040 Prague 3) Doppler Institute, Czech Technical University, Břehová 7, 11519 Prague, Czechia 4) School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, U.S.A. e-mail: [email protected], [email protected], [email protected]...
متن کاملAn isoperimetric inequality on the lp balls
The normalised volume measure on the lp unit ball (1 ≤ p ≤ 2) satisfies the following isoperimetric inequality: the boundary measure of a set of measure a is at least cnã log(1/ã), where ã = min(a, 1− a). Résumé Nous prouvons une inégalité isopérimétrique pour la mesure uniforme Vp,n sur la boule unité de l n p (1 ≤ p ≤ 2). Si Vp,n(A) = a, alors V + p,n(A) ≥ cn ã log 1/ã, où V + p,n est la mesu...
متن کاملAn Asymptotic Isoperimetric Inequality
For a finite metric space V with a metric ρ, let V n be the metric space in which the distance between (a1, . . . , an) and (b1, . . . , bn) is the sum ∑n i=1 ρ(ai, bi). We obtain an asymptotic formula for the logarithm of the maximum possible number of points in V n of distance at least d from a set of half the points of V , when n tends to infinity and d satisfies d √ n. 1 The Main Results Le...
متن کاملAn Isoperimetric Inequality for the Heisenberg Groups
We show that the Heisenberg groups H 2n+1 of dimension ve and higher, considered as Rieman-nian manifolds, satisfy a quadratic isoperimetric inequality. (This means that each loop of length L bounds a disk of area L 2). This implies several important results about isoperimetric inequalities for discrete groups that act either on H 2n+1 or on complex hyperbolic space, and provides interesting ex...
متن کاملAn isoperimetric inequality for the Wiener sausage
Let (ξ(s))s≥0 be a standard Brownian motion in d ≥ 1 dimensions and let (Ds)s≥0 be a collection of open sets in R. For each s, let Bs be a ball centered at 0 with vol(Bs) = vol(Ds). We show that E[vol(∪s≤t(ξ(s) + Ds))] ≥ E[vol(∪s≤t(ξ(s) + Bs))], for all t. In particular, this implies that the expected volume of the Wiener sausage increases when a drift is added to the Brownian motion.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physics Letters A
سال: 2007
ISSN: 0375-9601
DOI: 10.1016/j.physleta.2007.03.067